ROTEIRO P/ SIMULAÇÃO: OHMÍMETRO

Prof. Nildo Loiola Dias

1 OBJETIVOS

- Identificar resistores:
- Determinar o valor da resistência pelo código de cores;
- Utilizar o Ohmímetro Digital para medir resistências;
- Calcular os valores máximos de tensão e corrente elétrica suportados por um resistor.

2 MATERIAL

Simulação sobre a utilização do ohmímetro: https://laboratoriovirtual.fisica.ufc.br/ohmimetro

3 FUNDAMENTOS

Resistores são componentes elétricos muito utilizados na montagem de circuitos, Figura 1. Os resistores oferecem uma resistência à passagem da corrente elétrica e por isso mesmo são utilizados nos circuitos para limitar a corrente elétrica. A unidade de resistência elétrica é o ohm que é representado pela letra grega Ω (ômega). Os resistores transformam energia elétrica em calor pelo Efeito Joule; esse efeito é indesejado em muitos casos (como em computadores, celulares, etc), já em outros casos (chuveiro elétrico, forno elétrico, secadores de cabelos, etc) é a finalidade do mesmo.

Fonte: brasilescola.uol.com.br/o-que-e/fisica/o-que-sao-resistores.htm. Acesso em 23 de jun. de 2020.

Nesta prática estudaremos como identificar o valor nominal de um resistor pelo código de cores e aprenderemos como medir a resistência utilizando um multímetro digital. As resistências usadas em aparelhos eletrodomésticos para produzir calor não utilizam o código de cores e por isso não abordaremos nessa prática.

CÓDIGO DE CORES

Os resistores comerciais, popularmente chamados de resistências, trazem o valor de sua resistência codificado em faixas coloridas e dispostas como mostra a Figura 2.

Figura 10.2 - Um resistor (resistência) comercial.

Figura adaptada de: https://blog.multcomercial.com.br/voce-sabe-ler-o-codigo-de-cores-dos-resistores-entenda/ Acesso em 14 de nov. de 2020.

Estas faixas representam, de acordo com sua cor e sua posição, o valor da resistência indicado pelo fabricante, conhecido como **valor nominal**. Em geral os resistores apresentam 4 ou 5 faixas coloridas. A Tabela 1 apresenta o valor numérico atribuído a cada cor. As faixas coloridas devem ser lidas da faixa mais próxima de uma das extremidades para o centro do resistor como indicado na Figura 3. Se o resistor tem 4 faixas, a faixa da tolerância (última faixa) será prateada ou dourada. Outra característica é que a faixa da tolerância pode se apresentar um pouco diferente das demais (ou mais larga ou destacada das demais) indicando assim em que ordem as faixas devem ser lidas. A **tolerância** indica uma margem de incerteza no valor real da resistência em relação ao valor nominal. Uma tolerância de 5% em um resistor de 100 Ω indica que o valor real da resistência poderá ser qualquer valor entre 95 Ω e 105 Ω .

Figura 3 - Ordem de leitura e significado de cada faixa para resistores comuns (quatro faixas) e para resistores de precisão (cinco faixas).

Fonte: elaborada pelo autor.

Existem também resistores com seis faixas que são lidas como os que tem cinco faixas, sendo a sexta faixa indicativa do coeficiente de temperatura. O coeficiente de temperatura representa a variação da resistência em partes por milhão (PPM) por grau Celsius.

Os resistores comerciais não são fabricados com qualquer valor numérico de resistência. Os resistores com 10% de tolerância só são fabricados com valores (em Ω) iguais ou múltiplos de 10 da série abaixo:

1,00 1,20 1,50 1,80 2,20 2,70 3,30 3,90 4,70 5,60 6,80 8,20

Os resistores com 5% de tolerância só são fabricados com valores (em $\,\Omega$) iguais ou múltiplos de 10 da série:

1,00 1,10 1,20 1,30 1,50 1,60 1,80 2,00 2,20 2,40 2,70 3,00 3,30 3,60 3,90 4,30 4,70 5,10 5,60 6,20 6,80 7,50 8,20 9,10

Os resistores com 2% de tolerância só são fabricados com valores (em Ω) iguais ou múltiplos de 10 da série:

```
1,00 1,05 1,10 1,15 1,21 1,27 1,33 1,40 1,47 1,54 1,62 1,69 1,78 1,87 1,96 2,05 2,15 2,26 2,37 2,49 2,61 2,74 2,87 3,01 3,16 3,32 3,48 3,65 3,83 4,02 4,22 4,42 4,64 4,87 5,11 5,36 5,62 5,90 6,19 6,49 6,81 7,15 7,50 7,87 8,25 8,66 9,09 9,53
```

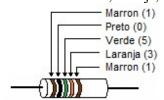
Os resistores com 1% de tolerância só são fabricados com valores (em $\,\Omega$) iguais ou múltiplos de 10 da série:

Tabela 1 - Código de Cores.

Cor	1º faixa	2º faixa	3º faixa	Multiplicador	Tolerância	Coef. de Temperatura
Preto	0	0	0	×10 ⁰		
Marrom	1	1	1	×10 ¹	±1% (F)	100 ppm
Vermellie	2	2	2	×10°	±2% (G)	50 ppm
Laranja	3	3	3	×10°		15 ppm
Amarelo	4	4	4	×10 ⁴		25 ppm
Verde	5	5	5	×10 ⁵	±0.5% (D)	
Azul	6	6	6	×10 ⁶	±0.25% (C)	
Violeta	7	7	7	×10 ⁷	±0.1% (B)	
Cinza	8	8	8	×10 ⁸	±0.05% (A)	
Branco	9	9	9	×10 ⁹		
Ouro				×0.1	±5% (J)	
Prata				×0.01	±10% (K)	
Sem cor					±20% (M)	

Fonte: TecEng: Tabela de cores para resistor (tecenge.blogspot.com). Acesso em 26 de jan. de 2021.

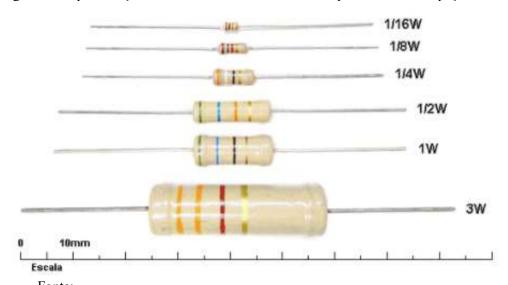
A seguir temos dois exemplos de leituras do código de cores para resistores; um exemplo para um resistor de 4 faixas, Figura 4 e o outro para um resistor de 5 faixas Figura 5.


Figura 4 - Exemplo de um resistor comum (com quatro faixas).

Fonte: elaborada pelo autor.

- A primeira faixa corresponde ao primeiro dígito do valor nominal: vermelho = 2;
- A segunda faixa corresponde ao segundo dígito do valor nominal: violeta = 7;
- A terceira faixa corresponde ao expoente da potência de dez pela qual devemos multiplicar o número formado com os dois dígitos acima: preto = 0, isto é, multiplicar por 10^0 ;
- A quarta faixa representa a tolerância no valor da resistência: ouro = 5%. Então, $R = 27 \Omega$ com tolerância de 5%.

Figura 5 - Exemplo de um resistor de precisão (com cinco faixas) então, $R = 105 \times 10^3 \Omega$ com tolerância de 1%, ou seja, $R = (105 \pm 1\%) \text{ k}\Omega$



Fonte: elaborada pelo autor.

Como os resistores transformam energia elétrica em calor, os mesmos se aquecem quando conduzem corrente elétrica. Uma especificação importante dos resistores é sua potência máxima de dissipação, acima da qual eles podem se danificar (queimar). A potência máxima é função do tamanho físico do resistor, Figura 10.6, e é fornecida pelos manuais dos fabricantes. Em geral são fabricados resistores com potências de 1/16 W, 1/8 W, 1/4 W, 1/2 W, 1 W, 2W (não mostrado na Figura 6), 3 W e maiores.

Nem todos os resistores trazem o código de cores pintado em seu corpo. Os resistores que têm potências maiores do que 3W trazem o valor da potência gravado em seu corpo.

Figura 6 - Representação do tamanho dos resistores e suas potências de dissipação máxima.

www.clubedohardware.com.br/topic/1460221-como-achar-a-potência-watts-de-um-resistor/

Acesso em 14 de nov. de 2020.

CÁLCULO DOS LIMITES DE TENSÃO E CORRENTE SUPORTADAS POR UM RESISTOR

A potência, P, que um resistor dissipa pode ser calculada em função da tensão, U, e da corrente, i, (eq. 10.1); em função da tensão (eq. 10.2) e da resistência, R; ou em função da resistência e da corrente (eq. 10.3):

$$P = U_{i} \tag{1}$$

$$P = U^2/R \tag{2}$$

$$P = Ri^2 \tag{3}$$

Então, um resistor de 1 k Ω de 1/8 W pode ser submetido a uma tensão máxima de 11,18 V que corresponde uma corrente máxima de 11,18 mA, enquanto que um resistor de 1 k Ω de 1/2 W pode ser submetido a uma tensão máxima de 22,36 V que corresponde a uma corrente máxima de 22,36 mA.

O OHMÍMETRO

O instrumento usado para medir diretamente resistências é chamado de ohmímetro. Geralmente o ohmímetro vem associado a um voltímetro e a um amperímetro, formando um só instrumento denominado multímetro. Nesta prática virtual usaremos uma simulação baseada no multímetro digital cujo ohmímetro apresenta escalas que vão de 200 Ω até 2000 k Ω , Figura 7 (esquerda). No laboratório de Física da UFC utilizamos, dentre outros modelos, o multímetro Minipa ET 1005, Figura 7 (direita).

Figura 7 - Multímetros digitais: HYX DT830D (esquerda) e Minipa ET 1005 (direita).

Fonte: elaborada pelo autor.

A escala de $200~\Omega$ deve ser usada para medir resistências de até $200~\Omega$. A escala de $2000~\Omega$ deve ser usada para medir resistências entre $200~\Omega$ e $2~k\Omega$ e assim por diante. Quando tentamos medir uma resistência cujo valor é maior do que o limite da escala utilizada, o multímetro fornece a seguinte leitura: (1.); neste caso você deverá MUDAR PARA UMA ESCALA MAIOR até

obter uma leitura adequada. **Quando uma resistência pode ser medida em várias escalas**, você DEVERÁ ESCOLHER A MENOR DESTAS ESCALAS de modo a obter um maior número de algarismos significativos.

CUIDADOS AO MEDIR COM O OHMÍMETRO:

- a) Conecte a ponta de prova preta ao terminal "COM" (negativo) e a ponta de prova vermelha ao terminal "VΩmA" (positivo). Embora a utilização do ohmímetro seja feita sem distinção de polaridade, é importante que você adquira o hábito de obedecer sempre a esta convenção.
- b) Escolha a escala adequada ao valor da resistência a ser medida.
- c) Certifique-se que o resistor medido não está associado a nenhum outro resistor ou fonte.
- d) Cuide para que haja um bom contato entre as pontas de prova e os terminais do resistor.
- e) Durante a medida não toque nas partes metálicas das pontas de prova, pois a resistência do seu corpo influenciará na medida.

5 PROCEDIMENTOS

Para a realização dos procedimentos acesse à simulação do ohmímetro pelo link: https://laboratoriovirtual.fisica.ufc.br/ohmimetro

Na Figura 8 podemos ver a tela inicial da simulação **Ohmímetro**. Esta simulação permite estudar o funcionamento da função ohmímetro de um multímetro digital. Na simulação somente a função ohmímetro está ativa. O valor da resistência dos resistores pode ser determinado segundo o código de cores e a medida pode ser verificada com o ohmímetro. Os valores medidos podem variar (dentro da tolerância de cada resistor) a cada nova reinicialização da simulação.

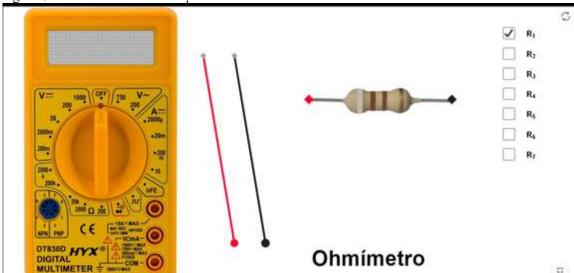


Figura 8 - Tela inicial da simulação ohmímetro.

Fonte: elaborada pelo autor.

CONTROLES DA SIMULAÇÃO

- Escolha um dos 7 resistores.
- Conecte o cabo preto arrastando a extremidade circular para a entrada apropriada do multímetro e arraste a outra extremidade para fazer contato com o resistor.
- Conecte o cabo vermelho arrastando a extremidade circular para a entrada apropriada do multímetro e arraste a outra extremidade para fazer contato com o resistor.
- Pressione o ponto amarelo na borda do seletor do multímetro e arreste para a escala apropriada do ohmímetro.

PROCEDIMENTO 1: Escalas do Ohmímetro.

Na Figura 9 podemos ver em detalhe as escalas dos ohmímetros que estão ilustrados na Figura 5.

Figura 9 - Detalhe mostrando as escalas dos ohmímetros da Figura 5.

Fonte: elaborada pelo autor.

OBS: Alguns multímetros indicam uma escala como 2000 Ω outros como 2 $k\Omega$ (ou a escala de 2000 $k\Omega$ como 2 $M\Omega$). Há uma diferença de como o display apresentará o valor da resistência. Por exemplo, se a resistência é de 1563 Ω , o primeiro multímetro indicará (1563) e o segundo (1.563), ou seja, uma medida estará em Ω e a outra em $k\Omega$.

1.1 Anote as escalas dos ohmímetros da Figura 9.

Tabela 2 - Escalas dos ohmímetros.

Multímetro	Escalas
HYX DT830D	
Minipa ET 1005	

PROCEDIMENTO 2: Identificação do Valor da Resistência pelo Código de Cores.

- 2.1 Identifique as cores das faixas de cada resistor da simulação e anote na Tabela 3 de acordo com a ordem em que devem ser lidas.
- 2.2 Determine o valor nominal e a tolerância de cada resistor.

Tabela 3 - Identificação da resistência pelo código de cores.

R	Cores	R _{nominal}	Tolerância
1			
2			
3			
4			
5			
6			
7			

PROCEDIMENTO 3: Medida da Resistência.

- 3.1 Anote na Tabela 4 os valores nominais das resistências obtidos no Procedimento 2.
- 3.2 Meça com o Ohmímetro Digital virtual os valores das resistências e anote na Tabela 4. Anote também a escala utilizada do ohmímetro em cada caso.
- 3.3 Determine o erro percentual da medida em relação ao valor nominal.

Tabela 4 - Valores "medidos" de resistência e determinação do erro.

R	$R_{nominal}$	R_{medido}	Escala	Erro (%)
1				
2				
3				
4				
5				
6				
7				

PROCEDIMENTO 4: Cálculo dos limites de tensão e corrente elétrica em um resistor.

4.1 Calcule a tesão máxima e a corrente máxima para cada resistor especificado na Tabela 5.

Tabela 5 - Valores máximo de tenção e corrente suportados por um resistor.

N.	Especificações do Resistor	I _{MÁXIMO} (mA)	V _{MÁXIMO} (V)
1	910 Ω e 1/2 W		
2	7,5 Ω e 1/8 W		
3	33 kΩ e 1 W		

6 QUESTIONÁRIO

- 1- Um resistor, R₁, apresenta as seguintes faixas: Laranja, Verde, Violeta, Marrom e Marrom. Um resistor, R₂, apresenta as seguintes faixas: Azul, Cinza, Marrom, Dourada e Vermelha. Quais os valores nominais das resistências? E quais as tolerâncias?
- 2- Quais as cores das faixas indicativas do valor nominal de um resistor de 6,19 Ω e 2 % de tolerância.

- 3- Sabemos que somente alguns valores de resistências são fabricados (ver valores indicados nos FUNDAMENTOS). O valor medido de um resistor com 2% de tolerância deu 601 kΩ. Qual o provável valor nominal desse resistor?
- 4- O que significa a tolerância de um resistor?
- 5- Um resistor de 1,30 k Ω tem uma tolerância de 5 %. Qual o valor mínimo esperado para o valor da resistência do mesmo? E qual o valor máximo?
- 6- Qual a escala apropriada para medir uma resistência de valor nominal 3,3 M Ω ? Considere o multímetro **HYX** DT830D da Figura 9.
- 7- Um estudante deseja produzir uma corrente elétrica de 20 mA. Para isso ele dispõe de uma bateria de 9,0 V como fonte de tensão. Qual o valor da resistência e qual a potência mínima da mesma (considerando as opções de potências indicadas na Figura 6) que o aluno deve escolher?